红外空间天文台:宇宙探索的璀璨明珠
天文学家一直在努力探索宇宙,但由于地球大气会吸收紫外线、红外线等波段的光,地面观测受到严重限制。为了避免这些影响,天文学家不断寻找新的观测方式。
尽管机载天文台有所优势,但仍无法探测到全部红外光且受飞机振动影响。因此,发射红外波段的空间望远镜成为最佳选择。1983年,美国、荷兰与英国共同发射了第一款红外空间望远镜——红外天文卫星(IRAS)。这颗卫星扫描了96%的天空,发现了约35万个红外发射源以及4颗小行星和6颗彗星。然而,由于液氦制冷剂限制,IRAS在工作9个多月后即告结束。此背景下,红外空间天文台(ISO)应运而生。
1995年11月,由欧洲航天局(ESA)主导,美国宇航局(NASA)和日本宇宙航空研究开发机构(JAXA)参与合作,红外空间天文台(ISO)成功发射。这标志着国际在红外天文学领域的合作又迈出坚实一步。三方充分发挥各自优势,共同探寻宇宙的奥秘。
ISO重2.5吨,主镜直径0.6米,运行在近地点1000千米、远地点70600千米的大椭圆轨道。与地球自转速度一致的24小时环绕周期大大便利了地面科研人员的观测操作,提高了使用效率。
ISO较之前的IRAS显著扩展了观测波长范围至2.5至240微米,为天文学家开辟了新的观测可能性,提供了深入宇宙认知的平台。ISO能够捕捉到更多由不同天体发出的红外信号,揭示更多宇宙奥秘。
ISO在12微米波段的灵敏度提高了1000倍,大大提高了探测微弱红外信号的能力,能够观察到遥远星系中恒星形成区域及死星周围的细微变化。
角分辨率提升100倍,使ISO能够更精确地分辨天体的细节,对于研究天体结构、形态和演化至关重要。通过这种观测,天文学家可以更好地理解恒星形成、行星大气组成及星系演变。
ISO携带283千克液氦制冷剂,远超IRAS的73千克。液氦作为超低温制冷剂,将望远镜冷却至极低温度,减少自身红外干扰,提高观测准确性和灵敏度。
ISO在垂死恒星周围发现年轻行星的重大发现,使天文学家重新审视关于行星形成的理论。
首次在星际气体云中检测到氟化氢分子,证明宇宙中存在复杂化学过程,这些过程与生命的起源和演化相关。在猎户座大星云中探测到的水分子,进一步推动了对宇宙生命起源的研究。
ISO在仙女座大星云M31的发现包括前所未见的同心环,这些环由温度极低的气体和尘埃组成,新恒星正在其中形成。
在5500光年外的三叶星云M20,ISO发现大质量中心星促进着第二代恒星的产生,帮助理解恒星的演化过程。
通过深空巡天,ISO研究了1000多个活跃星系,揭示了大规模恒星形成的过程。许多星系通过光学望远镜无法如此清晰地观察到,它们被认为在大约100亿年前诞生于星系形成的黄金时代。
ISO的成功发射和运行对红外天文学的发展有深远影响,为后续空间望远镜发展提供了宝贵经验。